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Abstract
A novel approach to cortical modeling was introduced by Knight et al.

(1996). In their presentation cortical dynamics is formulated in terms of in-
teracting populations of neurons, a perspective that is in part motivated by
modern cortical imaging (For a review see Sirovich and Kaplan (2002)).

The approach may be regarded as the application of statistical mechanics to
neuronal populations, and the simplest exemplar bears a kinship to the Boltz-
mann equation of kinetic theory. The disarming simplicity of this linear equation
hides the deeply complex behavior it produces. A purpose of this paper is to
investigate and reveal its intricacies by treating a series of solvable special cases.
In particular we will focus on issues that relate to the spectral analysis of the
underlying operators. A fairly thorough treatment is presented for a simple,
but not trivial example, which has important consequences for more general
situations.
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1 Introduction

An earlier paper Knight et al. (1996) introduces a novel approach to the mod-
eling and simulation of the dynamics of interacting populations of neurons.
Briefly stated, instead of specifying a blueprint of enumerated neurons and their
connections, a probabilistic approach was presented, based on rigorously derived
kinetic equations. Under this approach the specification of the individual states
of neurons is replaced by their probable states. Precursors to the treatment may
be found in works of Stein (1965) and Wilbur and Rinzel (1982), Abbott and
van Vreeswijk (1993), Kuramoto (1991) and Gerstner (1995). Further exposi-
tions of the present approach are given in Knight (2000), Omurtag et al. (2000),
Nykamp and Tranchina (2000), Sirovich et al. (2000), Casti et al. (2001), de
Kamps (2002).

In the present treatment we consider the eigentheory of operators which
typically appear in the kinetic formulation. A previous paper, Sirovich et al.
(2000), considered the distinguished eigenfunction corresponding to the zero
eigenvalue, λ = 0, which describes the equilibrium state. A typical equilibrium
solution for the distribution of membrane potentials is shown in Figure 1. It
graphically displays the complexity encountered in treating such population
models.

1



0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

pr
ob

ab
ili

ty
de

ns
ity

v

Direct Simulation
Analytical Solution
Numerical Solution

0 10

20

40

Figure 1: A typical equilibrium solution taken from Sirovich et al. (2000). The
ordinate has been clipped for better view. The inset shows the full range of
variation. As indicated there is close agreement between the analytic solution
and the numerical solution of the governing equation. Also shown is the result
of a direct simulation of 90, 000 neurons Omurtag et al. (2000)

In general the formulation involves a translation operator in the voltage vari-
able, see (2), which accounts, in large part, for the mathematical complications.
Analytically there is a clear distinction between the λ = 0 and the λ 6= 0 cases.
Although features of the technique used in Sirovich et al. (2000) carry over
to the present analysis, enough new features enter to recommend the relatively
fresh start we give below.

2 Review

The population model on which this study is based derives from a neuronal
dynamics described based on the simple integrate-and-fire equation, discussed
in Knight (1972). (Also see Tuckwell (1988)for some early history.)

dv

dt
= −γv + s; 0 ≤ v ≤ 1. (1)

Here the trans-membrane potential, v, has been normalized so that v = 0 marks
the rest state, and v = 1 the threshold for firing. When the latter is achieved
v is reset to zero, a non-linear feature. γ, a frequency, is the leakage rate
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and s, also having the dimensions of frequency, is the normalized current due
to synaptic arrivals at the neuron. It is sometimes, incorrectly said, that (1)
is a “toy model” of the Hodgkin-Huxley equations. Kistler et al. (1997) and
Knight (2000) have demonstrated with some rigor that (1), in fact, furnishes an
excellent approximation to the Hodgkin-Huxley dynamics. This is illustrated in
the following figure which compares outputs from both.
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Figure 2: Comparison of Hodgkin-Huxley and integrate-and-fire (dotted curve)
spiking dynamics, for a steady current input. Inset shows the equivalent circuit.

Under the statistical approach one considers a population of N neurons, each
following (1), so that Nρ (v, t) dv specifies the probable number of neurons, at
time t, in the range of states (v, v + dv). ρ, the probability density may be
shown to be governed by

∂ρ

∂t
= − ∂

∂v
J =

∂

∂v

(
γvρ− s

h

∫ v

v−h

ρ (v′, t) dv′
)

=
∂

∂v
(γvρ)+

s

h
ρ(v−h)− s

h
ρ(v),

(2)
(Knight (2000), Omurtag et al. (2000)) where h is the membrane voltage jump
due to a spike arrival and J is the neuronal flux in the state space. This model
may be extended to include inhibition, time delay, membrane dynamics a richer
set of reversal potentials and stochastic effects, as well as more complicated
neuronal models, Omurtag et al. (2000), Haskell et al. (2001), Nykamp and
Tranchina (2000), Casti et al. (2001). A principal goal of the present paper is
to obtain a sense of the structure of the class of operators of which (2) is the
simplest representative.
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J , the flux, is seen to be composed of a backward drift due to leakage,γv
and a forward convection due to the synaptic arrival rate

σ = s/h. (3)

With each arrival the membrane voltage jumps by an amount h, resulting in
the birth and death terms in (2). (In biophysical terms, an arrival engenders
a brief conductance change, which in our approximation produces the voltage
jump, h.) A quantity of some importance is the per neuron firing rate, r (t),
of the population and this is clearly given by the flux of neurons leaving at the
threshold value of the membrane potential

r = J (v = 1, t) . (4)

Boundary Conditions

Since the number of neurons is preserved, the flux of neurons leaving the
interval must equal those entering at the resting state

J (ρ)v=0 = J (ρ)v=1 . (5)

From this it follows that probability is conserved,∫ 1

0

ρ(v, t)dv ≡ 1. (6)

We can take
ρ(v = 1, t) = 0, (7)

as a second boundary condition. To justify this, imagine that (2) is formally
solved in successive sub-intervals, v ∈ ((n− 1)h, nh)). In general we can write

∂

∂t
ρ(v, t) = γ

∂

∂v
vρ(v, t)− σρ(v, t) + f(v, t), v ∈ (0, 1), (8)

where f(v, t) = σρ(v − h, t) is regarded as known. Consistent with this formu-
lation we can take

ρ(v, t = 0) = ρ0(v) ≡ 0 ≡ f(v, t); v ≥ 1. (9)

Under (9) if (8) is integrated on characteristics then

ρ = ρ0(veγt)e(γ−σ)t +
∫ t

0

f(veγ(t−t′), t′)e(γ−σ)(t−t′)dt′ (10)

But from (9) it follows that the integrand in (10) vanishes for

veγt > eγt′ . (11)
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Therefore

ρ = ρ0(veγt)eγt +
1
σ

∫ t

t+ 1
γ ln v

f(veγ(t−t′), t′)e(γ−σ)(t−t′)dt′, (12)

from this it is clear that (7) holds for t > 0. We avoid an unimportant initial
discontinuity by restricting attention to initial data such that ρ0(1) = 0.

Eigenfunction Problem

From the above it is clear that the appropriate eigenfunction problem is
specified by

γ
∂

∂v
(vφ)− s

h
{φ (v)− φ (v − h)} = λφ; 0 ≤ v ≤ 1 (13)

and
J(φ)v=0 = J(φ)v=1; φ (1) = 0. (14)

The flux condition, which appears in (14), ensures that λ = 0 is an eigen-
value, which as already mentioned yields the equilibrium solution. The second
condition in (14) has been shown to be consistent with the formulation. The
eigentheory is largely governed by the dimensionless parameter

θ =
s

γh
=

σ

γ
(15)

which is the ratio of the leakage rate, γ, and the synaptic arrival rate, σ. In
realistic situations θ is a large parameter. For some purposes it is also convenient
to regard h as a formal (small) parameter.

It is useful to recast (2) into another equivalent form. Under the boundary
condition (5) the flux condition is

J (0) =
s

h

∫ 0

0−h

ρ (v′) dv′ = J (1) =
s

h

∫ 1

1−h

ρ (v, t) dv′, (16)

which since we are at liberty to take ρ ≡ 0 outside the interval 0 ≤ v ≤ 1
underlines the fact that ρ has delta function behavior at the origin. All neurons
in the interval v ∈ (1 − h, 1) which receive synaptic arrivals appear at the
origin. Such neurons remain trapped at the origin until synaptic arrivals jump
the neurons to the membrane potential h. Thus since σ is the arrival rate this
delta function can be introduced explicitly as follows,

∂

∂t
ρ = γ

∂

∂v
(vρ)− σ {ρ (v, t)− ρ (v − h, t)}+ σA(t)δ (v) (17)

where

A(t) =
∫ 1

1−h

ρ (v′, t) dv′ = A[ρ], (18)
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a linear functional of ρ, is the fraction of neurons residing in the last subinterval
(1− h, 1). If σ is constant we can set τ = σt and write (17) as

∂

∂τ
ρ =

1
θ

∂

∂v
(vρ) + ρ(v − h)− ρ(v) + A[ρ]δ(v) = Lρ, (19)

a form which incorporates condition (5). (The form of the adjoint operator L†,
which is somewhat unusual, is given in Appendix 1.) Equivalently we can take
σ = 1 and γ = 1/θ in (17). In what follows we investigate (17) by means of the
eigentheory of

Lφ = λφ, (20)

φ(1) = 0.

Aspects of eigentheory are frequently well organized by applying the Laplace
transform to (19), and this too will appear below.

3 Zero Leak

To gain some insight into the structure of the problem, consider (19) under the
limit θ ↑ ∞, h held fixed,

∂

∂τ
ρ = ρ(v − h)− ρ(v) + A[ρ]δ(v) (21)

with

ρ(t = 0) = ρ0(v), (22)

and A given by (18). Since (21)holds when γ ↓ 0, we term (21) the zero leak
equation. Alternately, if we adopt the zero leak assumption in (2), γ = 0, we
obtain

∂ρ

∂t
= σ{ρ(v − h)− ρ(v) + A[ρ]δ(v)}. (23)

If the synaptic arrival rate is a function of time, σ = σ(t), time dependence is
transformed away by introducing

τ =
∫ t

0

σ(t)dt, (24)

which also reduces (23) to (21).
In any case we consider (21) and to simplify the solution we adopt the

(unnecessary) assumption that

1
h

= N (25)

is an integer. Next we compartmentalize the density so that
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ρ(v, t) =
N∑

k=1

ρk(v, t) (26)

with ρk = 0 if v 6∈ [(k − 1)h, kh]. The initial data are similarly decomposed

ρ0(v) =
N∑

k=1

ρ0
k(v). (27)

In the following we continue to take ρ = 0 outside the interval, v 6∈ [0, 1].
In such terms equations (21) and (22) may be re-expressed as

d

dτ
ρn = ρn−1 − ρn + A[ρN ]δ(v) (28)

and

ρn(τ = 0) = ρ0
n(v), (29)

which we assume to be smooth. It should be clear that after the first instant
a delta function appears at the origin, since the density evolves by incremental
jumps of h. Thus after the first instant delta functions appear at all multiples
of h. This observation suggests the decomposition

ρk(v, τ) = ρ̂k(v, τ) + Dk(τ)δ(v − (k − 1)), (30)

where ρ̂k(v, τ) is smooth and Dk(τ) represents the strength of the delta function
in the kth interval. Initially

Dk(0) = 0. (31)

If the decomposition (30) is applied in the first compartment we obtain,

d

dτ
D1 = −D1 + A = −D1 + DN +

∫ 1

1−h

ρN (w)dw (32)

and

d

dτ
ρ̂1 = −ρ̂1. (33)

In second interval we obtain

d

dτ
D2 = D1 −D2 (34)

and

d

dτ
ρ̂2 = Thρ̂1 − ρ̂2 (35)

where Th is the translation operator
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Thf(v) = f(v − h). (36)

These steps carry over to an arbitrary interval, and if we define

L =



−1 0 0 . . . . . . 0
Th −1
0 Th −1 0 . . . 0

0 0 Th

...
...
0 0 . . . 0 Th −1


(37)

then the smooth part

ρ̂† = [ρ̂1, ..., ρ̂N ] (38)

satisfies

d

dτ
ρ̂ = Lρ̂. (39)

Equation (39) is formally the same as what occurs in a Poisson process (Feller
1966). The membrane potential, v, is just a parameter and the translation
operator, Th, commutes with the time derivative. In this notation the solution
is given by

ρ̂ = eτLρ0 (40)

with

eτL = e−τ



1 0 0 . . . . . . . . 0
τTh 1 0 . . . . . . . . 0

(τTh)2

2! τTh 1 0
(τTh)3

3!
(τTh)2

2! (τTh)
...

...
(τTh)N−1

(N−1)!
(τTh)N−2

(N−2)! . . . . . . . . (τTh) 1


. (41)

We observe that L has a single eigenvalue, −1, and the single eigenvector,
(0, 0, ..., 1)†.

Only the last component of ρ̂, figures in the solution of D (see (32)), and
this is given by

ρ̂N (v, t) = e−τ
N∑

k=1

(τTh)N−k

(N − k)!
ρ0

k(v) = e−τ
N∑

k=1

τN−k

(N − k)!
ρ0

k(v − (N − k)h). (42)

From this the term appearing in (32) is given by
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∫ 1

1−h

ρ̂N (w, t)dw = e−τ
N∑

k=1

τN−k

(N − k)!
f0

k (43)

where

f0
k =

∫ kh

(k−1)h

ρ0(v)dv (44)

is the initial fraction of probability in the kth interval.
If we write

g† = [
∫ 1

1−h

ρ̂N (w, τ)dw, 0, ..., 0] (45)

with ρ̂N given by (42) then the delta function strengths D† = [D1, .., DN ] satisfy

d

dτ
D = CD + g (46)

D(τ = 0) = 0 (47)

with C a circulant matrix,

C =



−1 0 0 0 . . . 1

1 −1 0
...

0 1 −1
...

... 0
0 . . . . . . . . 1 −1


. (48)

The eigenvalues, λj of C

λj = −1 + e2πij/N j = 0, ...N − 1 (49)

lie on a circle of unit radius centered at λ = −1 in the complex λ-plane. The
corresponding eigenvectors have Fourier form; in fact if we define the unitary
matrix

(U)mn =
e2πi mn

N

√
N

; m,n = 0, ...N − 1, (50)

then

C = UΛU† (51)

where

(Λ)mn = λnδnm (52)
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and hence

D =
∫ τ

0

UeΛ(τ−s)U†g(s)ds. (53)

Several features of the development are worth noting. We see that for θ ↑ ∞,
the membrane potential, v is simply a parameter of the problem. Also note-
worthy is the fact that (21) has been reduced to two coupled solvable problems.
One of these, (46), involves a circulant operator, and (39) describes a Poisson
point process. de Kamps (2002), in also considering the zero leak limit, has also
observed the connection to a Poisson point process.

For later comparison we specialize our results. For the one compartment
model h = 1, the solution is given by

ρ(τ, v) = e−τρ0(v) + (1− e−τ )Aδ(v) (54)

with

A =
∫ 1

0

ρ0(w)dw (55)

a constant, since probability is conserved. (Actually we should set A = 1.) For
τ ↑ ∞(t ↑ ∞)

ρ = Aδ(v). (56)

This is the equilibrium solution and the entire neuronal population resides at
the origin. A synaptic arrival immediately causes a neuron to fire, after which
it returns to the origin. The firing rate

r = σ(t)A (57)

is seen to faithfully represent the input signal, and thus this is a faithful encoder.
Note that the spectrum of the one compartment operator consists of the two
points

λ = 0,−1. (58)

As a second example we consider the two-compartment model, h = 1
2 . The

smooth portion of the solution has the form

ρ̂1 = ρ1(v)e−τ (59)

ρ̂2 = (τρ0
1(v −

1
2
) + ρ0

2(v))e−τ , (60)

while the delta function strengths are given by

D1(t) =
1
2
(f0

1 + f0
2 )− e−τf0

1 +
e−2τ

2
(f0

1 − f0
2 ) (61)
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and

D2(t) =
1
2
(f0

1 + f0
2 )− e−τ (τf0

1 + f0
2 ) +

e−2τ

2
(f0

2 − f0
1 ), (62)

where the f0
k are defined by (44). In this instance λ = 0,−2 are eigenvalues of

multiplicity one, and λ = −1, is an eigenvalue of algebraic multiplicity 2, and
geometric multiplicity 1.

In the general case the spectrum consists of the eigenvalues (49) each of mul-
tiplicity one and λ = −1 of algebraic multiplicity N and geometric multiplicity
one. In general the solution decays, for t ↑ ∞, to the equilibrium solution

ρ →
∫ 1

0
ρ0(w)dw

N

N−1∑
k=0

δ(v − kh). (63)

which is depicted in Figure 3. Note that in the zero leak limit, γ = 0, the
population acts as a faithful encoder since the output of the population is

r(t) =
1
N

σ(t), (64)

which precisely reproduces the input.

ρ

0 1 vh 2h (N-1)h

ρ

0 1 vh 2h (N-1)h
 

 
 
 
 
 
 
 
 

Figure 3: Equilibrium in the zero leak limit

4 Non-Zero Leak

Because of the algebraic multiplicity, λ = −1, which emerged above, it is evident
that perturbation of the zero leak solution leads to analytical difficulties. In fact
we will only be able to solve, in simple terms, when h = 1 and h = 1

2 The latter
already exhibits features encountered in the general case.
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One compartment : h = 1

In this case the equation is

∂ρ

∂τ
=

1
θ

∂

∂v
(vρ)− ρ(v, τ) + δ(v)

∫ 1

0−
ρ(w, τ)dw (65)

with

ρ(t = 0) = ρ0(v) (66)

since ρ(v − 1) = 0 in the interval. (We use the notation 0± to indicate a point
infinitesimally to the right or left of the origin.) If we integrate (65) over the full
interval, (0−, 1), it clearly conserves probability. The solution to (65) is easily
seen to have a delta function at the origin and if we write

ρ = D(t)δ(v) + ρ̂(v, τ) (67)

where ρ̂ is the smooth part, it then follows that

d

dτ
D = A, (68)

where A is

A =
∫ 1

0+
ρ(w)dw =

∫ 1

0

ρ̂(w)dw. (69)

and

∂

∂τ
ρ̂ =

v

θ

∂ρ̂

∂v
+ (

1
θ
− 1)ρ̂ (70)

The smooth portion, ρ̂,is easily integrated on the characteristics of (70), v0 =
veτ/θ, to find that

ρ̂(v, τ) = ρ0(veτ/θ)e(1−θ)τ/θ. (71)

Note that ρ0(v) = 0 for v ≥ 1, so that (71) is well-defined for all τ .
From this it follows that

A(τ) = eτ/θ

∫ e−τ/θ

0

ρ0(veτ/θ)dve−τ = e−τ

∫ 1

0

ρ0(w)dw = A0e−τ (72)

and hence

D = (1− e−τ )A0. (73)

Although this completes the solution it is revealing to solve by Laplace trans-
form.
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Laplace Transform

If we denote the transform variable by z then the Laplace transform of (65)
is easily seen to give

ρ(z, v) =
δ(v)
z

A(z) +
θ

v

∫ 1

v

(
v

w
)(z+1)θρ0(w)dw, (74)

where the argument z indicates the Laplace transform of a dependent variable.
To identify with (71) note the Laplace inversion of the integrand of the second
term gives

1
2πi

∫
↑
dzezτ (

v

w
)θ(z+1) =

v

θ
e(1−θ)τ/θδ(w − vτ/θ), (75)

which if inserted in the integral leads to (71). In light of the form of A(τ), (72),
it follows that A(z) = A0/(z + 1) so that the first term of (74) gives rise to
eigenvalues λ = 0 and λ = −1.

Two compartments: h = 1/2

We mention in passing that the two-compartment case can be regarded as a
model for LGN relay cells, Kaplan et al. (1987). In this regard we remark the
following serves as a guide for solving the more general case of 1/2 < h < 1.

For h = 1
2 we have

∂ρ

∂τ
=

ρ

θ
+

v

θ

∂ρ

∂v
− ρ(v) + ρ(v − 1

2
) + A(τ)δ(v) (76)

A(τ) =
∫ 1

1
2

ρ(w, τ)dw (77)

ρ(v, 0) = ρ0(v) (78)

As in the zero leak case we use the decomposition (26), so that

ρ = ρ1(v, τ) + ρ2(v, τ). (79)

1st compartment : 0 ≤ v ≤ 1
2

The solution follows the treatment of the single compartment case. If we
write

ρ1 = D(τ)δ(v) + ρ̂1(v, τ), (80)

then

d

dτ
D = −D + A. (81)
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Note that in contrast to (68), (81) leads to decay. For the one compartment
case a synaptic arrival at the origin signals a firing and the immediate return
of the neuron to the origin. For the two and higher compartment case, a single
arrival depletes the population at the origin.

Integrating as in the one compartment case we obtain the characteristics
locus

v = v0e
−(τ−τ0)/θ (82)

and the solution

ρ̂1 = ρ1(v0, τ0)e(1−θ)(τ−τ0)/θ. (83)

(v0, τ0) marks the initial point, on a characteristic, from which we integrate.
As seen in Figure 4 the characteristics can originate in the initial line, τ = 0,
in which case τ0 = 0, or at the boundary, v = 1/2, in which case τ0 marks the
intercept of the characteristic with v = 1

2 . Under the dividing characteristic,
v = 1

2e−τ/θ, see Figure 4, we take τ0 = 0, thus solving for v0 from (82) and
substituting into (83) yields.

ρ̂1(v, τ) = ρ0
1(veτ/θ)e(1−θ)τ/θ. (84)

As will be seen below, the delta function at the origin translates into a discon-
tinuity at v = 1

2 , and we therefore write

ρ̂1(
1
2

−
, τ0) = B(τ0). (85)

where 1
2

− is infinitesimally to the left ( 1
2

+ to the right) of 1
2 . To solve above

the dividing characteristic we evaluate (83) at v = (1/2)−, and substitute τ0 =
τ + θln2v, the solution of (82), into (85) and (83). This yields

ρ̂1(v, τ) = (2v)θ−1B(τ + θ ln 2v). (86)
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Figure 4: Characteristics for the two-compartment model. The dividing char-
acteristics in each compartment is indicated by a heavy line.

2nd Compartment : 1
2 < v ≤ 1

The equation in this interval is given by

∂

∂τ
ρ2−

v

θ

∂

∂v
ρ2 = (

1
θ
−1)ρ2+ρ1(v−

1
2
) = (

1
θ
−1)ρ2+Dδ(v−1

2
)+ρ̂1(v−

1
2
, τ). (87)

If we integrate (87) across the infinitesimal interval (1
2

−
, 1

2

+) we obtain

1
2θ

ρ+ − ρ− + D = 0, (88)

where ρ± = ρ( 1
2

±), and therefore

ρ+
2 = B(τ)− 2θD(τ). (89)

The characteristics of (87) are the same as (82) and the probability density
is given by
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ρ2(v, τ) = ρ(v0, τ0)e(1−θ)τ/θ +
∫ τ

τ0

ρ̂1(v0e
(τ ′−τ0)/θ− 1

2
, τ ′)e(1−θ)(τ−τ ′)/θdτ ′. (90)

For the region under the dividing characteristic, v = e−τ/θ, τ0 = 0, ρ2(v0, τ0) =
ρ0
2(v0) and for any point (v, t) the characteristic locus is

v0 = veτ/θ. (91)

If this is substituted into (90) we obtain

ρ2(v, t) = ρ0
2(veτ/θ)e(1−θ)τ/θ+

∫ τ

τ+θln v

ρ̂1

(
ve(τ−τ ′)/θ − 1

2
, τ ′
)

e(1−θ)(τ−τ ′)/θdτ ′.

(92)
The lower limited is dictated by the condition that ρ̂1(v, τ) vanishes for v > 1

2 .
Equation(92) still holds for the region above the characteristic, with the remark
that the first term vanishes. There is no contribution from the boundary v = 1
since ρ(v, τ) vanishes there, (7).

To reduce complexity we specialize to the case when

ρ0
1(v) ≡ 0. (93)

In this case ρ̂1(v, t) is just given by (86), which if substituted into (85), and
characteristic coordinates s = ve(τ−τ ′)/θ, introduced in the integral, leads to

ρ2(v, τ) = ρ0
2(veτ/θ)e(1−θ)τ/θ

+vθ−1θ
∫ 1

v

(
2s−1

s

)θ−1
B
(
τ + θ ln

[
v
(

2s−1
s

)])
ds
s

. (94)

The first term vanishes above the dividing characteristic, v = e−τ/θ, and the
second vanishes below it. In summary, at this point, the solution is fully deter-
mined by (86), and (94), in terms of B(τ).

To obtain B(τ) we must consider the three conditions (77), (81) and (89).
For this purpose we introduce the Laplace transforms

B(z) =
∫ ∞

0

e−zτB(τ)dτ (95)

and

A(z) =
∫ ∞

0

e−zτA(τ)dτ, (96)

where we adopt the convention that the argument indicates the form being
discussed. Clearly, the transform of (81),

zD(z) = −D(z) + A(z), (97)
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allows elimination of D(z). This analysis is straightforward and we skip some
of the intermediate steps. Condition (77) requires substitution of (94) into the
integral, followed by the Laplace transform. After some manipulation we find

A(z) =
1

z + 1
B(z)

2

{
1

θ(z + 1)
− F (z)

}
+

1
z + 1

(P 0(−1)− P 0(z)) (98)

where

P 0(z) =
∫ 1

1
2

ρ0
2(w)dw

(2w)(z+1)θ
(99)

depends on the initial data. The transcendental function

F (z) =
∫ 2

1

(
u− 1

u

)−1+θ(z+1)
du

u
= G(z), (100)

with

z = θ(z + 1). (101)

plays an important role and is discussed in Appendix 2. Similarly, condition
(89) requires that the evaluation of (94) be substituted for ρ+

2 , and the equation
then can be Laplace transformed. This results in

B(z)− 2θ
A(z)
z + 1

= θF (z)B(z) + 2θP 0(z). (102)

Equations (98) and (102) form a 2× 2 linear system for A(z) and B(z), and the
solution is given by

(
A(z)
B(z)

)
=

1
Det(z)

(
1− θF (z)

( 1
z+1−θF (z))

2θ(z+1)
2θ

z+1 1

)(
P 0(−1)−P 0(z)

z+1

2θP 0(z)

)
(103)

where the determinant of the coefficient matrix is easily seen to be

Det(z) = −2θ(z + 1)
(

z + 1− 1
(z + 1)2

+ θF (z)
(

1
z + 1

− (z + 1)
))

. (104)

The general case of N compartments is analytically far more complex, but
the determination of the dispersion relation, Det(z) = 0, still follows from the
three conditions just applied. Namely, that (1) there is a delta function at v = 0;
(2) the jump at v = h is determined by the strength of this delta function; and
that A is given by (18). As in (104), in the general case the dispersion relation
for the eigenvalues is given by the determinant of a 2 × 2 system for A(z) and
B(z).
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5 Eigentheory

For the case h = 1/2, the operator L, (20), is given by

(λ + 1)φ =
1
θ

∂

∂v
(vφ) + φ(v − 1

2
) + A(φ)δ(v). (105)

Calculation of the eigenvalues, λ, is accomplished by finding the roots of the
dispersion relation, (104), i.e. Det(λ) = 0 or

λ(1 + (λ + 1)(λ + 2)) = λ(λ + 1)(λ + 2)θG(θ(λ + 1)). (106)

Once the roots of (106) are determined, we can determine A(λ) and B(λ) from
the previous section, and the eigenfunctions are easily gotten from (105) and
given by

φ =

{
A(λ)
λ+1 δ(v) + B(λ)(2v)−1+θ(λ+1), 0 ≤ v < 1

2

θB(λ)v−1+θ(λ+1)
∫ 1

v
( 2w−1

w )−1+θ(λ+1) dw
w , 1

2 < v ≤ 1.
(107)

Clearly

λ = 0 (108)

is a root, and the corresponding eigenfunction gives the equilibrium solution. A
plot of the equilibrium solution for θ = 10 is shown in Figure 5.
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Figure 5: Two compartment equilibrium solution, φ, corresponding to λ = 0.
The heavy line at the origin is meant to indicate the delta function
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It is worth pausing to comment on Figure 5. In equilibrium the delta function
at the origin acts as a reservoir of neurons at the resting potential. When a
synaptic event occurs it jumps a neuron at v = 0 to v = 1/2. The distribution
experiences a backward drift, due to leakage, proportional to v. This accounts
for the fall-off at v = 1/2 and for v ∼ 1. Such deliberations carry over to the
general case of arbitrary h, and can be used to understand the more general
structure, see Figure 1.

To continue we divide λ out of (106), and also introduce the recursion formula
(129) in Appendix 2 to obtain,

1 + (λ + 1)(λ + 2) = (λ + 2)2−θ(λ+1) + (λ + 1)(λ + 2)θG(1 + θ(λ + 1)). (109)

As a result of this maneuver the dispersion relation, (109), is valid for

Re(λ) > −1− 1
θ
. (110)

A simple calculation shows that G(1) = ln 2 from which it is clear that λ = −1
is a root of (109). The negative real axis in fact contains an infinitude of
eigenvalues. To see this we use the series representation of G(z), (138), given in
Appendix 2.

θG(θ(λ + 1)) = 2−θ(λ+1)
∞∑

m=0

(
1
2
)m 1

λ + 1 + m
θ

(111)

If this is substituted into (106) we obtain

1
(λ + 1)(λ + 2)

+ 1 = 2−θ(λ+1)
∞∑

m=0

1
2m

1
λ + 1 + m

θ

(112)

It is clear from the form of (112) that this expression has real roots on the
negative axis, each of which lie in an interval between the successive poles

λ = −1− m

θ
; m = 1, 2, ... (113)

From Watson’s lemma, Appendix 2, for |θ(λ + 1)| ↑ ∞ and |arg(λ + 1)| < π

G(θ(λ + 1)) ∼ 2−θ(λ+1)

θ(λ + 1)
(114)

If this is substituted into (106) we obtain

21−θ(λ+1) ∼ 1
λ + 2

+ (λ + 1). (115)

We seek roots in the form

λ + 1 =
x

θ
+ iy, (116)
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for θ large. If this is substituted into (115) to lowest order

e(1−x−iyθ)ln2 ∼ 1
1 + iy

+ iy. (117)

This in turn implies that

e(1−x)ln2 =

√
1 + y6

1 + y2
(118)

and from this (117) can be reexpressed as

e−iyθ ln2 =
1 + iy3√

1 + y6
(119)

Since roots occur in conjugate pairs we restrict attention to y > 0. For large y
we obtain

yn =
(4n + 3)

θ ln2
π

2
; n = 0, 1, 2... (120)

The corresponding values of x are given by

xn = 1− 1
ln2

ln

(√
1 + y6

n

1 + y2
n

)
(121)

and the eigenvalues by

λn = −1 +
xn

θ
+ iyn. (122)

In carrying these results forward some fine print is required, and is given
below.

Figure 6 indicates the spectrum of this problem. The asterisks, ∗, represent
values of λ gotten by numerical means, see Appendix 3. This procedure is
quite accurate for Re λ > −1 and for reasons explained below unreliable for
Re λ < −1. In fact the cusp locus at the left is entirely artefactual. The
asymptotic estimate, (122), is given by circles, ◦.

6 Discussion

Solution of the two-compartment problem, by means of the method of charac-
teristics, required the determination of A(t) and B(t). This was achieved by
Laplace transform, and is given by (103). Laplace inversion of of A(z) and B(z)
would then give the required A(t) and B(t). The eigenvalue analysis implies
that the solution for these may be viewed as a superposition over all eigenvalues
including the rapidly decaying elements corresponding to Reλ < −1. However,
if one adopts the view that the solution of the initial value problem (77)- (78),
is given by a superposition of temporally decaying eigenfunctions of the form
(107), some fine print is required.
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Figure 6: Spectrum for the two-compartment case. Circles, ◦, represent asymp-
totic estimate (122), and the continuous line comes from (121). The asterisks,
∗, represent values obtained from computation.

In arriving at the form of the eigenfunctions, (107), as well as the adjoint
operator theory given in Appendix 1, the analysis tacitly assumes that the
eigenfunctions are bounded at the origin. If Re λ < −1 this is manifestly
not true, see (107). Thus the credentials of the eigentheory becomes dubious.
As mentioned above this difficulty is avoided by the method of characteristics
which only calls for the calculation of A(t) and B(t). It is also avoided by a
direct Laplace transform of equation (76), a method which is closely related to
the eigenfunction approach. In fact for the formal transform solution, as the
Bromwich inversion path is moved to the left in the complex z-plane of the
transform variable, we pick up the pole contributions. The poles are indicated
in Figure 6. The pole residues contain a temporal factor, exp(λnt), where
λn is an eigenvalue, and a v dependence corresponding to the eigenfunctions
given by (107). For Re z > −1 this solution is well behaved in v. It is only
when Re z < −1 that divergences, in v, corresponding to the above described
analysis for Re λ < −1, appear. However for any finite z we have a summation
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of ”eigenmodes” and plus a Bromwich integral. Since this was arrived at by
analytically continuing an integral which is non-divergent in v, (for Re z > −1)
it follows that the summation of eigenmodes and the Bromwich integrals must
contain cancelling divergences in v.

22



Figure 7: The real and imaginary parts of φ1, corresponding to the first eigen-
function encountered to the left of λ = 0.

These deliberations also have a bearing on interpreting numerical procedures
for determining the spectrum and their corresponding eigenfunctions. A rela-
tively accurate algorithm for treating the eigentheory in general is presented in
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Appendix 3. This was applied to the two-compartment case for θ = 10 . The
results for the spectrum are shown in Figure 6. Since a discretization enters
into a numerical calculation one cannot realistically deal with singular behav-
ior. Naturally, this has an impact on the spectrum, as already mentioned, and
as well on the calculation of eigenfunctions. The eigenfunction corresponding
to the first eigenvalue to the left of λ = 0 is shown in Figure 7 as is the cor-
responding eigenvalue. The eigenfunction oscillates relatively rapidly, but as is
easily from the value of λ it vanishes at v = 0.

The very next eigenvalue is given by

λ ≈ −.9343± 1.635i. (123)

In this case the exponent in (107), −1 + θ(λ + 1) is negative, and although the
corresponding eigenfunction contains an integrable singularity, it does diverge
at v = 0, and is incorrectly determined by the numerical procedure. Thus one
must exercise care in proceeding with numerical methods.
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Appendix 1
Adjoint Problem

To find the adjoint operator, Q†, we proceed in the usual way, introduce the
adjoint eigenfunction φ̂, and consider∫ 1

0

φ̂Lφdv =
∫ 1

0

φL†φ̂dv (124)

On parts integration and some straightforward transformations we arrive at the
adjoint operator given by

L†φ̂ =

 −v
θ

∂
∂v φ̂−

{
φ̂ (v)− φ̂ (v + h)

}
; 0 ≤ v ≤ 1− h

−v
θ

∂
∂v φ̂−

{
φ̂ (v)− φ̂ (0)

}
; 1− h ≤ v ≤ 1

. (125)

There are no boundary conditions on φ̂. Inspection of (125) shows that the
operator is discontinuous at v = 1− h, however the solution will be continuous
there. Observe also that φ̂ = 1 is the adjoint eigenfunction corresponding to
λ = 0.

As an illustration of the adjoint calculation we consider the special case
of h = 1/2. In this case equation (125) may be integrated for 1

2 ≤ v ≤ 1
immediately to give

φ̂ =
φ̂0

λ + 1
+ v−θ(λ+1)(φ̂1 −

φ0

λ + 1
) (126)
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where φ̂0 = φ̂(0) and φ̂1 = φ̂(1). Next this is substituted back into (125), which
leads to

φ̂ =
φ̂0

(λ + 1)2
+ θ(φ̂1 −

φ̂0

λ + 1
)vθ(λ+1)

∫ v

0

(
w

w + 1
2

)θ(λ+1) dw

w
(127)

for 0 ≤ v ≤ 1
2 . For v ↓ 0 in (127) we obtain

φ̂0 =
φ̂0

(λ + 1)2
+ (φ̂1 −

φ̂0

λ + 1
)
2θ(λ+1)

λ + 1
. (128)

A second condition is that (126) and (127) must agree at v = 1/2. From this it
can be shown that the dispersion relation (106)is recovered.

Appendix 2
The dispersion relation (106) depends on the single transcendental function,

G(z) = G(θ(z+1)), defined by (100). Straightforward parts integration of (100)
yields

G(z) =
2−z

z
+ G(1 + z) =

2−θ(λ+1)

θ(λ + 1)
+ G(1 + θ(λ + 1)). (129)

Although this relation may be applied recursively, this proves less useful beyond
this point.
Under the transformation

u− 1
u

=
1
2
e−w (130)

(100) becomes

G(z) = 2−z

∫ ∞

0

e−zw dw

1− 1
2e−w

. (131)

We observe that for |z| ↑ ∞ and |argz| < π/2, Watson’s lemma yields

G(z) ∼ 21−z

z
. (132)

We will require the nature of G(z) in the left half plane. To obtain the
analytic continuation of G imagine rotating the ray (0,∞) say by e−iφ, so that

G(z) = 2−z

∫
w=re−iφ

e−zw dw

1− 1
2e−w

(133)

with r = (0,∞). On transforming to the real axis by setting w = re−iφ

G(z) = 2−z

∫ ∞

0

e−(zre−iφ) dre−iφ

1− 1
2e−reiφ (134)
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This continues G(z) for Re(ze−iφ) > 0, and if Watson’s lemma is applied,

G(z) ∼ 2−z e−iφ2
ze−iφ

, (135)

for −π
2 < arg(ze−iφ)< π

2 , or equivalently for

φ− π

2
< arg z <

π

2
+ φ. (136)

The equation is the same as (132). Therefore if we take φ = ±π
2 we obtain that

(132) is valid for −π < arg z < π and |z| ↑ ∞.
To further continue G(z) we must consider that the denominator of (131)

has zeros at

w = −ln2 + 2πin, n = 0,±1, ... . (137)

Since we have no need for this we do not pursue this. Instead we point out that
if in (131)the coefficient of the exponential is expanded in a geometric series we
easily obtain

G(z) =
1
2z

∞∑
m=0

(
1
2
)m 1

z + m
, (138)

which is a rapidly convergent series, away from the poles at the negative integers.
This form, valid in the entire z plane, clearly reveals the structure of G(z).

Appendix 3
A General Numerical Procedure
Instead of dealing with the numerical form of the eigenvalue problem (20), we

treat the discretization of (17). This will give the semblance of more generality,
but in point of fact the two treatments become equivalent under the symbolic
transformation ∂

∂t → λ.
We first point out that the decomposition

ρ = ρ̂ + Dδ(v) (139)

in (17) leads to the equivalent system,

dD

dt
= −D + A(ρ̂) (140)

and

∂

∂t
ρ̂ =

1
θ

∂

∂v
(vρ̂) + ρ̂(v − h)− ρ̂(v), (141)

with A(ρ̂) given by (18).
This has the effect of disengaging the delta function in the formulation, and

thus no numerical approximation to a delta function becomes necessary. To see
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the coupling of D to ρ̂, consider the integration of (141)across the infinitesimal
interval (h−, h+). This yields

0 =
h

θ
(ρ̂+ − ρ̂−) + D (142)

where

ρ± = ρ(h±), (143)

and hence

ρ̂+ − ρ̂− − θD

h
. (144)

Note that ρ̂ is coupled to D through

A =
∫ 1

1−h

ρ̂(w)dw (145)

which enters in (140).
Next, we discretize the problem by taking

M4 = h (146)

and

Nh = 1 (147)

where M and N are integers.
Thus, there are I = N ×M intervals and I + 1 grid points in the problem.

A main source of error in finite differencing arises in approximating derivatives.
As will be seen this can be avoided in our particular problem.

We index the density by writing

ρ̂(k4) = ρk, k = 0, 1, ...,M ×N − 1 (148)

In writing this we use the boundary condition (145)

ρ̂(1) = ρ̂(M ×N) = 0.

Therefore if we integrate (141) across the kth increment we obtain

∂

∂t

∫ k4

(k−1)4
ρ(w)dw =

4
θ

(kρk−(k−1))ρ(k−1)+
∫ k4

(k−1)4
(ρ(v−h)−ρ(v))dv (149)

It is noteworthy that the derivative is treated exactly in (149) . To treat the
jump, (144), we write

ρ̂ −(h) = ρM (150)
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and hence from (144)

ρ+(h) = ρM − θD

h
. (151)

Finite difference approximations to integrals such as appearing in (149) are
linear functionals of the vector

ρ = (ρ0, ρ1, ....ρN×M−1) (152)

For example if we adopt the trapezoidal rule∫ k4

(k−1)4
ρ(w)dw ≈ ρk + ρk−1

2
4+ O(43). (153)

(We comment shortly on more accurate approximations momentarily.) It should
be noted that D plus ρ represent I+1 dependent variables and (140) and amount
to the same number of equations, and we have a determined system. In general
if we write

x = (D,ρ) (154)

the discretised version of (17) thus has the form

C
∂x
∂t

= Bx

The eigenanalysis reported on in Section 5 was obtained using the trapezoidal
approximation, (153), to obtain C and B, and the generalized eigenvector algo-
rithm in Matlab was used to solve

λCx = Bx. (155)

Improvements in accuracy can be achieved. If the values ρk−2 or ρk+1 are
used to evaluate the integral in (153) a Simpson’s rule can be obtained in which
case the error becomes O(45). Pushing this beyond this approximation is risky
since numerical artifacts can enter. Another source of improvement is obtained
if a finer mesh is used in the early sub-intervals, h, 2h, ..., since the greatest
variations are experienced there.

Mention should also be made of the recent paper by de Kamps (2002) in
which the method of characteristics is employed to achieve an accurate numerical
integration of the density equation.
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